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A kinetic equation is obtained for a small  sys tem in a thermosta t  with a variable tempera ture ,  
the change of tempera ture  being taken into account by a phenomenological nonpotential force 
of the fr ict ion type. 

Suppose that the re tu rn  temperature  of a thermosta t  in energy units fi(t) changes sufficiently slowly 
with time t so that the thermosta t  passes  through a sequence of equil ibrium states.  In this case the single- 
part icle distribution function of the thermos ta t , cons i s t ing  of identical par t ic les  of mass  m, has the form 

[ [3 (t) 13/~. r - -~  (t) p~) 

We will call the sys tem small  if its effect on the thermosta t  can where p is the momentum of the part icle.  
be neglected. 

Let the small  sys tem be in equil ibrium with the thermostat .  We ra ise  the question of the form of the 
kinetic equation for such a sys tem taking into account the change of ~(t) with time. As will be shown below, 
this effect can be descr ibed by introducing an additional nonpotential force Q of the friction type. 

1. As a simple example we wilI consider  a gas of identical molecules the bulk of which forms a the rmo-  
stat with a variable temperature  and a small  part  of which is nonequilibrium, whereby the "internal" in ter-  
action in the small  sys tem can be neglected. Then the problem reduces  to construct ing a kinetic equation 
descr ibing the evolution of the distribution function f of one nonequilibrium part icle in the thermostat .  

We denote the coordinate and momentum of the nonequilibrium particle by ql and Pl and the coordinates 
and momenta of the par t ic les  of the thermosta t  by q2, P2 . . . . .  qN' PN" Let L be the Lagrangian of the 
complete sys tem "particle and thermosta t"  and aQ(pk, t ) b e  forces  not having a potential (non-Lagrangian),  
by means of a suitable selection of which the change of fl(t) with time will be taken into account. The Lagran-  
gian equations of a sys tem with nonpotential forces  have the form 

d OL OL 
d-~ O(dqk/dt ) Oq k =aQ~(Ph, t); k= l ,  2 . . . . .  3N. (1) 

As was shown in [1], in this case the following equation holds 

at + - + ~ o fQ(p . t )  
(l~s~3) m Oql s Opl s 

= 1 IB (f, FO - - - ~ -  d3q'dap ' Q (p~) f (X~) 
V 

(R) 

o o+ ] • Op--~- F~(X~)+Q(P' )F~(X2)  f(Xx) " (2) 
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Here V is the specific volume; R is the r eg ionof  collision in s ingle-par t ic le  phase space; Xi(q 1 , q~, Pi, P ' ,  
t) and X2(ql, q ' ,  Pl, P ' ,  t) are the coordinates and momenta which would be present  at time t for par t ic les  
part icipating in the collision if these par t ic les  were isolated f rom all others;  (q', p') is the coordinate and 
momentum of the part icle of the thermosta t  part icipating in the collision. The collision integral  in a Boltz-  
mann form is denoted by I B. We note that by virtue of the assumption of the absence of an effect on the 
small  sys tem on the thermosta t  the integrand in I B has a special  form:  

P10 - -  P0 ( f " - f ' )  F~, 
ITL 

where Pl0 and p~ are the momenta of the nonequilibrium particle and particle of the thermosta t  respect ively  
before their collision, and f" and f' are the function f after and before collision. 

Obviously when a = 0 ]~q. (2) changes to the usual Boltzmann equation; the t e rm proport ional  to e takes 
into account the effect of Q in the lower approximation with respec t  to the pa ramete r  a;  the t e r m  proport ional  
to the product of the small  pa ramete r s  (e/V) takes into account the lower corre la t ion  between the effect of 
Q (p) and mechanism of coll isions.  

The equations which should be satisfied by the s ingle-part ic le  distr ibution function of the thermosta t  
is a par t icular  case of (2). Therefore ,  substituting F i into (2), we obtain the relat ion determining Q(p, t): 

OF z ~ 0 
+ cz (F~Q) = 0. (3) 

(l~s~3) 

As is easy to be convinced by direct  substitution, the par t icular  solution of (3) relative to the unknown Q is 

aQ 1 dlnp(t)  P- (4) 
2 dt 

The general  solution differs f rom (4) by an a rb i t ra ry  additive function C(t). F r o m  the requirement  Q = 0 
for/3 = eonst we obtain C = 0. Thus (4) is a phenomenologieal force of the frict ion type which provides 
heating or cooling of the sys tem.  This force is analogous in its content to "systemat ic  f r ic t ion ,"  which, 
as Chandrasekhar [2, 3] showed, is experienced by Brownian par t ic les  interacting with a thermostat .  Since 
force Q should act equally on all par t ic les  of the sys tem,  by substituting (4) into (2) and limiting ourse lves  
to t e rms  that are l inear with respec t  to small  pa ramete r s  we obtain the kinetic equation being sought in the 
form 

- j  + P18 - 
(1~s~3) m 0-~1 s 2 dt cJpz 8 

32 ddtln~ [= VIB(f '  F,). (5) 

2. We will make severa l  comments  on the equation (5) thus obtained. 

It is c lear  f = F i is the solution not only of Eq. (5) but also of the more  general  Eq. (2), which is an 
obvious consequence of the very  method of selecting Q. However,  this -- one of the par t icular  solutions 
- -  is an analog of the equil ibrium solution of the Pol tzmann equation. 

The phenomenological force Q introduced exhibits a par t icular ly  formal  charac te r .  It seems likely 
to us that in a number of cases  it can be interpreted as a t ime-wise  smoothed nonconservative effect on a 
system, for example,  in the mechanism of heating of a gas by radiation. Probably such an interpretat ion can 
prove to be admissible also for a gas being heated (cooled) through the walls of a vesse l ,  despite the fact 
that the kinetic equation is derived at the thermodynamic limit. However,  it would not be desirable  here 
to go deeper into this quite difficult mat ter  for an accurate investigation. 

The examination of a small  sys tem differing in its nature f rom a thermosta t  and considerat ion of the 
internal interaction in the small  sys tem can be conducted without any difficulties by the scheme indicated 
above if we limit ourse lves  to lower approximations with respec t  to smal l  pa ramete r s .  The form of the 
equation in this case changes of course .  

3. We will establish also the law of the t ime-wise  change of the entropy of the sys tem with a variable 
tempera ture .  Let p (Pi, qi  . . . . .  PN'  qN, t) be the distribution function of the complete sys tem.  Then its 
entropy S is expressed  by the formula 

S =- -  S ~P*'" "d3qW .plnp, 
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whence 

dt - d3P~ " " " d3qN (1 + In p) dodt (6) 

As was shown in [4], for  s y s t e m s  obeying dynamic equations (1): 

do Z OQh 

i . e . ,  in the case  being cons idered  

Substituting (7) into (6), we obtain 

dp 3N dln~(t) 
dt 2 clt 

(7) 

d Sdt -- 3N2 ; d3pl "'" d3qN 9 (1@ In p) 

• dln~(t) 13N dln~(t) (S-- I ) .  
dt 2 dt 

We took into account in (8) the normal iza t ion  condition 

j~ . . . daqN I. 

In tegra t ing  (8), we obtain finally 

(8) 

s ( 0 -  1 + (s (0) - 1 )  [-~ (0 ] 3"/~ [ ~ (0) j (9) 

Thus entropy i n c r e a s e s  with an inc rease  of t e m p e r a t u r e  and d e c r e a s e s  if  the t e m p e r a t u r e  d e c r e a s e s .  

We can also cons ider  the ent ropy of the smal l  s y s t e m  

/7. = - -  S d~pld3ql[ Inf. 

Arguments  analogous to those just  given (but with the use of Eq. (5) for  calculat ing df/dt) lead to the e x p r e s -  
sion 

dh = j +  3 dln~(t) (h--l), 
dt 2 dt 

where J is a t e r m  re la ted  with the col l is ion in tegra l  in the Bol tzmann form.  The well-known ana lys i s  of 
this shows [51 that J ~ 0. Since h > 1, hence it is c l ea r  than the entropy of the smal l  sy s t em i n c r e a s e s  when 
~{ > 0, i . e . ,  dur ing heating of the the rmos ta t .  With a dec rea se  of the t e m p e r a t u r e  of the t he rmos t a t  the 
sign of the der iva t ive  h with r e s p e c t  to t ime can be,  genera l ly  speaking,  any. 
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